Supplemental Figure Legends

Figure S1: Batch correction results (related to Figure 1)

Summary analysis for the DNaseI data before and after correcting for protocol batch effects. (A) Hierarchical clustering, (B) Multidimensional Scaling, and (C) First principal component. Corresponding results for the microarray data are shone in panel D, E, and F. In both cases, the uncorrected data clearly show batch-biased grouping, and the first principal component captures the effect well. After correction, the data group as biologically expected and batch effect is reduced.

Figure S2: Detailed SOM results, and association of conservation, CpG islands, promoters, and tissue specificity (related to Figure 1, Figure 2)

(A) Heatmap illustrating hypersensitivity patterns across cell-types. Most clusters contain DHSs specific to a small number of cell-types. Columns represent clusters; Rows represent 112 cell-type samples. Tissue is identified by the colored legend on the right; similar tissues cluster together. Heatmap color corresponds to hypersensitivity. (B) Cell-type specificity of individual DHSs (maroon) and clusters (blue). Most clusters (and individual DHSs) represent DHSs present in a few cell-types, with a rapidly decreasing distribution as number of open cell-types increases. There is a noticeable increase in clusters open across all cell-types. The clusters capture the distribution pattern in the individual DHSs. (C) Scatterplot similar to main Figure 2A, except the color indicates the number open tissues, rather than overlap with conserved elements. Clusters associated with promoters and CpG Islands (upper right) are open in many tissues (red color) while those less associated (lower left) are found in few tissues (blue). (D) Stripchart, each point corresponds to a cluster with <90% overlap with PhastCons Vertebrate conserved elements. Y-axis: clusters are divided into two groups, those with an enriched CTCF motif and those without. X-axis: the proportion of the cluster that overlaps a promoter. All highly enriched clusters with low promoter overlap are CTCF-enriched. There is a clear bimodal distribution across promoter overlap. (E) Beanplots showing the distribution of number of open tissues (x-axis) with respect to their % overlap with Vertebrate PhastCons conserved elements, Placental PhastCons conserved elements, and Primate PhastCons conserved elements, and Promoters (2Kb upstream of annotated TSS). In all cases, clusters open in more tissues overlap more conserved elements and promoters. (F) Distribution of normalized DNase-seq signal intensities. For some analyses, we defined 0.4 as the cutoff to define an "open" DHS.

Figure S3: Complete motif enrichment (related to Figure 4, 5)

(A) Extended result of IRF analysis illustrating the motifs enriched in the 2nd 100 regions in each cluster. These motifs match those from the first 100, suggesting the consistent differences in motif are biological. (B) Complete results (for all motifs) for distribution of top tissue-type for JASPAR. In this heatmap, rows are tissues and columns are transcription factors. Colors indicate the proportion of clusters with that top tissue type for that factor (yellow = high, blue = low). (C) Boxplots for each factor tested for ChIP overlap with motifs found in DHS within a cluster; for each factor, the two boxes indicate the % overlap with ChIP peaks for: LEFT, clusters where the motif was enriched, RIGHT, all included clusters where other motifs were enriched. P-value is the Mann-Whitney p-value comparing the two distributions for each factor.

Figure S4: Connections comparison and pathway enrichment (related to Figure 7)

(A) The distribution of the number of connections to genes for each DHS. (B) The distribution of the number of connections to DHSs for each gene. (C) Q-Q plot showing that protein-coding genes tend to have more associations than RNA genes. (D) Tieplot showing connections at the PHC1 locus, as in main figure 7. (E) Enriched reactome pathways, and posterior probability of activation, based on two sets of genes associated with each cluster: First, genes based on assigning DHSs in the cluster to nearest gene, and second, adding genes to the first set based on DHS signal/gene expression correlation analysis.

Supplemental Table Legends

Table S1: List of cell-lines used in the study and their classification

columns: canonical, celltype, tissue, malignant, sex, description

Table S2: Annotation for each SOM Cluster

Table of summary data for the set of 1,856 refined clusters. It includes the number of DHSs in each cluster, the genomic coordinates and ID of a single representative DHS in the cluster, the number of "open" samples, celltypes, and tissues ("open" defined as signal > 0.4), and the identity of the maximum sample, celltype, and tissue.

columns: clusterID, dhs_count, chr, start, stop, dhs_id, #ofOpenSamples, #ofOpenCelltypes, #ofOpenTissues, max-sample, maxcell-type, maxcell-typeLineage, representativeDHS

Table S3: DHSs with cluster assignments

Table includes the coordinates for all DHSs included in the study, along with their cluster assignments. Table includes both the original cluster assignment, and the refined cluster assignment after merging similar clusters. Also included is the distance to the center of the cluster; in the case of original clusters, this is a euclidean distance, in the case of the refined assignment, this is a Mahalanobis distance.

columns: chr, start, stop, originalClusterId, refinedClusterId,originalDistance, refinedDistance

Table S4: SOM cluster to cell-type map

This table indicates the set of "open" samples, cell-types, and tissues for each cluster. A sample is defined as "open" if the normalized DNaseI signal is > 0.4 (scale 0-1; see Methods). Multiple rows may correspond to a single cluster, with each row indicating a single sample that is open in that cluster.

clusterID, openSample, opencell-type, opencell-typeLineage

Table S5: Clusters annotated by CpG, promoter, conservation overlap

Table of clusters with annotation for CpG overlap %, promoter overlap %, and PhastCons Vertebrate Conserved Element overlap %. The number indicates the proportion of the top 100 sites in the cluster that overlap, see Methods for additional details.

columns: clusterID, CpG overlap, promoter overlap, conservation overlap

Table S6: Results for tissue classifier

Complete results for the tissue classifier for included and malignant samples

columns: cell-type name, trueTissue, trueSex, top classifier prediction tissue, boolean for correct prediction, probabilities for each tissue: Brain, Endothelial, Epithelial, Fibroblast, Hematopoietic, Muscle, Stem

Table S7: Selected DHSs for tissue predictor

Genomic coordinates for the set of 43 DHSs with positive coefficients in the fitted tissue classifier model. These are the sites chosen by the classifier to predict tissue.

chr, start, stop, dhs_id
, cluster_id, tissue

TableS8: Results for sex classifier

columns: sampleName, tissue, trueSex, predictedSex, isCorrect, F, M (predicted probability distribution over categories Female, Male)

Table S9: Motifs Matches

A table illustrating which codes had motifs, and their matches.

columns: clusterID, iMotif (an index for the motif found in this cluster), siteCount (the number of sites out of 100 in this cluster where this motif was found), eDiscovery (MEME e-value for discovery of this motif), TF (factor in database, to which this motif matches), eMatch (e-value of the match between discovered and database motifs)

Table S10: Connections summary statistics

	DHSs: 
	2888805

	Filtered
	2708540

	Sites with a connection: 
	530564

	Sites connecting to a single gene: 
	377935

	Genes:
	38378

	Filtered: 
	31961

	Genes with a connection:
	31438


Table S11: Connections Table

List of all DHS to gene connections, cut-off at p-value < .05, along with the correlation and p-value for the connection. Each row is a connection, listing the DHS coordinates and index number, along with the gene coordinates, name, and index number.

columns: dhs_chr, dhs_start, dhs_stop, dhs_id, gene_chr, gene_start, gene_stop, gene_name, metaprobset_id, correlation, pvalue

Table S12: 3C experiments

Summary of the correspondence between published 3C connection results and the expression/DNaseI signal correlation connections we presented.

	Locus/Species
	References
	Accord
	Comparison Notes

	beta-globin

[Mouse, humanized mouse]
	Tolhuis et al. 2002

Splinter et al. 2006

Fang et al. 2009

Palstra et al. 2003
	Good
	This is an erythrocyte-specific interaction. In the 3C results, the HBD and HBB (adult globin) genes loop around to the LCR. Our only representative sample is K562, which expresses different globin genes, HBE1 and HBG1/2 (the embryonic and fetal globins). These correlate to 1 DHS in the beta-globin LCR known to loop to the genes. There are also many other correlations to K562-specific DHSs throughout the region.

	alpha-globin [humanized mouse]
	Vernimmen et al. 2009
	Good
	Result is similar to the beta-globin locus. The 3C experiments show an LCR inside C15orf35 (a.k.a. NPRL3), which connect to HBA1 and HBA2 (adult globins). Our samples, including K562, do not have expression from the arrays on these genes; however, the adjacent embryonic globin gene HBZ is expressed highly in K562 cells; from this gene we see significant correlations to the DHSs in the LCR. This is a series of K562-specific DHSs in NPRL3 introns.

	OCA2/

rs12913832 in HERC2 [Human]
	Visser et al. 2012
	Perfect
	SNP rs12913832 (chr15:28365618), in a HERC2 intron, is relevant for loop formation and gene expression of OCA2. OCA2 is involved in skin and eye pigmentation. Our data links OCA2 expression to a DHS located essentially at this SNP (only 143 bp away: chr15:28365325-28365475). This link is driven by expression and hypersensitivity in melanocytes, where the loop occurs, as well as a few other related skin or neuronal cell-types.

	IGF2/H19

[Mouse]
	Leighton et al. 1995

Kurukuti et al. 2006

Murrell et al. 2004
	Good
	Enhancers upstream of H19 have been shown to interact with IGF2 in an parent-specific manner. We find a correlation between IGF2 and several DHSs in the enhancer region, driven by expression and hypersensitivity in liver or brain cells.

	Th2 locus (IL4 connecting to HS sites in the 3' end of RAD50)

[Mouse]
	Spilianakis and Flavell 2004

Spilianakis et al. 2005
	Poor
	In mouse, these studies report a 3C connection in T cells but not B cells or fibroblasts. The Th2 LCR (inside the 3' end of RAD50) connects with the IL genes (IL13, IL4, and IL5). We see no corresponding correlation in the region because IL13, IL4, and IL5 are only lowly or uniformly expressed in all included samples; this includes all T-cells, hence we see no connection to the RAD50 intron LCR.

	Shh [Mouse]
	Amano et al. 2009

Sagai et al. 2005

Sagai et al. 2009


	Good
	Sagai et al. (2005) identified 3 elements near the Sonic Hedgehog (SHH) gene that are conserved from mammals to fish, and called them mammal-fish conserved sequences 1-3 (MFCS1-3). They first showed that mutations in MFCS1 cause abnormal limb development in mice; Amano et al. (2009) later showed with both 3C and FISH that this enhancer loops around to regulate SHH expression specifically in limb-bud tissues in development. In a separate study, Sagai et al. (2009) identified 3 additional nearby conserved elements, and then tested these 3 as well as MFCS2-3 in a developmental assay. They found that 4 of these conserved elements drive SHH expression in epithelial linings during mouse development. They did not find a tissue-specific affect for MFCS2.

We do not have corresponding embryonic epithelial or limb-bud representatives in this dataset; however, it has been shown that the hedgehog pathway is upgregulated in breast cancers (Kubo et al. 2004; Koga et al. 2008). Consistent with this, we find the SHH gene to be most highly expressed in MCF-7 cells. Sites correlated to the SHH gene are mostly driven by MCF-7-specific DHSs, of which there are several throughout the SHH-LMBR1 locus. We do not find any correlated MCF7-specific DHSs near MFCS1, or the other 4 elements found to drive epithelial expression; however, there is a series of 3 MCF7-specific DHSs near MFCS2 that do correlate with SHH expression. Of these 3 DHSs, 2 are essentially within MFCS2, 1 is about 5kb away. This result may indicate that this conserved element, the only of the 6 with still unknown developmental tissue specificity, may drive expression in mammary gland morphogenesis, where SHH expression is known to be important (Kubo et al. 2004).

	Oct4 [mouse]
	Kagey et al. 2010
	Good
	This study reported an ES-specific connection between Oct4 and an enhancer located about 2kb upstream. In human, we detect significant correlation between Oct4 expression and several upstream enhancers. These may correspond to the same event seen in mouse. Despite some question as to the accuracy of the arrays we used in measuring Oct4 expression, the profile appears at least slightly elevated in ES cells, driving the correlation to several highly specific nearby ES cell DHSs, including one about 3kb from the end of Oct4.

	Nanog [mouse]
	Kagey et al. 2010
	Poor
	The Nanog expression data from the array is of limited reliability due to cross-hybridization.

	Phc1 [mouse]
	Kagey et al. 2010
	Good
	PHC1 is an ES-specifically expressed in our data, as expected. Although we did not identify a single DHS that connects at the same distance in the mouse data, we do see several significant DHSs ranging from a few kb to more than 80kp upstream. These are all potential regulators of PHC1. This may reflect rearrangements between mouse and human. Kagey et al. (2010) reported 3C results for areas surrounding 4 pluripotency regulators, including PHC1, in mouse ES cells. We detected correlations with individual hypersensitive sites several kb upstream of PHC1 that were consistent with the 3C results. In each case, these associations were driven by pluripotency-specific DHSs and expression. In addition to a correlation with the nearest upstream enhancer, we also detected several other long range (75-100kb) pluripotency-specific sites that correlate with PHC1 expression. In contrast, a gene flanking PHC1 were connected to DHSs that are driven primarily through correlations in endothelial cells. We were unable to explore the connections surrounding the other genes due to issues with microarray measurements (see Supplemental Info).

	Lefty [mouse]
	Kagey et al. 2010
	Poor
	Our expression data for Lefty has no variation across cell-types.

	IFNG [Human, mouse]
	Hadjur et al. 2009
	Good
	In this study Hadjur et al. (2009) used 3C to show the IFNG locus interacts with regulatory elements located both upstream and downstream the IFNG gene. These are specific to Th1 cells. In our data, we included Th1 cells and found similar results, correlating Th1-specific IFNG gene expression with Th1-specific DHSs throughout the region.

	LCN2, LCR in Ciz1 [Mouse]
	Hakim et al. 2009
	Poor
	This study demonstrates a loop between an glucocorticoid-response element in the LCN2 promoter and the nearby Ciz1 gene, which occurs in hepatocytes but not pituitary cells. Hakim et al. (2009) reported that horomone induction activates Ciz1 expression and suggested that the loop structure exists prior to hormone induction to facilitate rapid transcriptional response. Consistent with this hypothesis, we do not see a correlation between DHSs near LCN2 and expression of Ciz1 because the expression of Ciz1 is uniform. We would not expect to see a correlation with expression unless we included hormone induced samples of the same variety, which we did not.


Supplemental Methods

DNase-seq protocols


DNase-seq data was generated using two different protocols, referred to as the Duke and UW protocols (Song and Crawford 2010; Sabo et al. 2004; Crawford et al. 2004). Briefly, for both, DNA is digested with a small concentration of DNaseI, and the ends of the resulting fragments are short-tag sequenced, where the 5’ end corresponds to a DNaseI cut site. The Duke protocol ligates an adapter to high molecular weight DNA fragments containing DNaseI-digested ends and then uses MmeI to create 20bp DNA molecules for sequencing. In contrast, the UW protocol requires two nearby DNaseI cuts creating fragments that are size selected and sequenced. We used DNase-seq data from 112 cell lines, 45 generated at Duke and 67 generated at UW. Data for at least two replicates were generated for each sample, tested for reproducibility, and combined for each cell-type. All DNase-seq and expression data are publicly available on the UCSC Genome Browser (http://genome.ucsc.edu).

DHS data normalization and preprocessing


For each cell-type, we calculated the number of DNaseI cuts in each DHS. Counts were quantile-normalized and capped at the 99th quantile by setting the top 1% of scores to the 99th quantile score. Counts were re-scaled by dividing by the maximum count for that cell-type, yielding a normalized score between 0 and 1. Artifactual differences between protocols (Figure S1) were corrected using ComBat (Johnson et al. 2007). Because the data was too large for the ComBat model, we divided it into subsets of about 300,000 DHSs and corrected the batch affect individually on each subset. 

Microarray protocol and normalization


First, probesets flagged as cross-hybridizing were removed from the analysis (Salomonis et al. 2010). We assigned remaining probesets to genes based on the GENCODE v10 annotation (July 2011) available from Ensembl (Harrow et al. 2006; Flicek et al. 2011). We reasoned that constitutive exons would provide the most robust expression estimates, so we flagged constitutive probesets (those present in all protein-coding transcripts), and used only these for genes with at least 4. For all other genes, including all non-protein-coding genes, we used all probesets that mapped to the gene. After assigning probesets to genes, we normalized the data using Affymetrix Power Tools (APT) with the chipstream command “rma-bg, med-norm, pm-gcbg, med-polish”. This chipstream calls for an RMA normalization with gc-background correction using antigenomic background probes. Using hierarchical clustering and multidimensional scaling, we found the arrays primarily clustered based on protocol reagents and lab. To make the arrays comparable, we used ComBat to correct for this batch affect (Johnson et al. 2007). After correction with ComBat, the arrays grouped according to expected biological similarity (Figure S1). 

Self-organizing maps


After building the initial SOM, we then refined the nodes to merge those that were sufficiently similar. To do this, we first defined a “merge priority list” using a hierarchical clustering on the node centers. This list defines the order in which the clusters are combined in the hierchical clustering We then iterated through this list and considered whether to join the two closest (in euclidean space) node centers. For a proposed node-join step, we calculated the Mahalanobis distance from all points in the smaller node (fewer DHSs) to their node center, and also to the proposed joining node center. If the median (50th quantile) distance to the joining node center was less than the first quartile (25th quantile) distance to the original node center, then the nodes were merged, taking the center of the larger node. The Mahalanobis distance is a slight variation on Euclidean distance that considers the covariance matrix of points that belong to a node. When calculating the Mahalanobis distance of a point to a new node, the result can be thought of as a probability contour of generating that point from the density of that node. After considering each of the 2,499 merges proposed by the hierarchical clustering, we merged 644 SOM nodes, resulting in 1,856 unique final nodes.

CpG-island, promoter, and conserved element overlap


For this and many subsequent analyses, we selected only 100 representative DHSs for each cluster. We selected the 100 sites that were closest to the cluster center in Mahalanobis distance. Our rationale for choosing the top 100 is to enhance signal-to-noise. The SOM reduces the dimensionality of the data by clustering millions of sites into just a few thousand clusters. Every site must be assigned to a cluster, so sites that do not match one of the common patterns will essentially be randomly assigned. To eliminate this noise, selecting the top 100 sites in each cluster ensures that we are using only sites that are actually representative of the cluster pattern. For clusters with fewer than 100 sites, all sites are used. 

Limitations of the SOM motif analysis


There are several areas for future improvement in the SOM analysis. First, we are restricted to TFs that alter chromatin structure. Along this line, 521 of the 2500 SOM clusters did not show any significant motif enrichment. This highlights that a common pattern does not necessarily imply a common motif or factor. The SOM also does not distinguish direct from indirect effects; A given DHS may adopt a particular DHS configuration via looping, in which case we would not necessarily find the same motif in all DHSs with that profile. Alternatively, several TFs could drive a particular pattern, complicating motif discovery, and TF binding is combinatorial so there is more complex logic (AND and OR). Some of these problems could be alleviated by combining these results with ChIP results for TFs or histone marks, DNA methylation, or DNaseI footprinting (Boyle et al. 2011). Additional information like this could enable us to further delineate among clusters, increasing our ability to draw meaningful biological conclusions.

General motif summary results


For the general motif summary, we filtered motifs based on both MEME (e-value < 1e-5) and motIV (e-value < 1e-8) scores. Each SOM cluster was assigned the tissue with the highest DHS signal in that cluster. For each TF, we found all clusters in which that TF was found, and collected the distribution of tissue types for those clusters (Figure S3). To determine how many cell-types were present in a given cluster, we counted the number of cell-types with at least 1 sample above a normalized DHS score of 0.4. This cutoff provides a reasonable approximation, as the distribution of signals has low frequency between 0.2 and .95, so numbers within this range are likely to yield similar results (Figure S2G). We then found the cell-type specificity of a given TF, according to the distribution of number of open cell-types in the clusters where that TF motif is enriched.

Discovered motifs in shared clusters


We found motifs enriched in clusters defined by DHSs with high signals in multiple cell-types (Figure 4B). For example: GATA family and FEV/ETS motifs were enriched in a cluster open in erythrocytes (red blood cells), megakaryocytes (platelet-producing bone marrow cells), and endothelial cell-types (cluster 743). GATA family members are expressed in all three cell-types (Zhu and Emerson 2002, Ferreira et al. 2005, Orkin et al. 1998, Shivdasani et al. 1997, Dorfman et al. 1992). ESE1 is an ETS family transcription factor that mediates inflammation, which may explain the megakaryocyte and endothelial specificity (Pignatelli and Carnevale 2011, Rudders et al. 2001). The hepatocyte nuclear factor (HNF)-like motifs were enriched in a cluster shared between hepatocytes and endothelial cell-types (cluster 541). It is well known that HNFs regulate development and function in hepatocytes (Odom 2004), and they also appear to function in endothelial cells (Osanai et al. 2002). The motif for RUNX1, a hematopoietic differentiation factor (Okuda 2001), was enriched in a cluster preferentially open in hematopoietic lines as well as a number of other cell lineages (cluster 14). The MYF family motif was enriched in a muscle and neural cluster (cluster 1518). In general, the expression patterns of these factors are consistent with the tissue-specificity of the motif signals.


These are cases where clusters grouping multiple cell-lineages were enriched for motifs. There are a variety of explanations for these results. Such a motif could actually be functioning in two lineages as a result of shared recent lineage history or shared regulatory mechanism despite divergent lineage history. Different factors could bind the same motif in different lineages, or a single factor could have a different function in different lineages. The result could also be an artifact of the method rather than biologically meaningful. For example, it may reflect the inability of the SOM to separate two unique profiles; in this case, the motif may be enriched in a subset of the regions with a strong enough signal to overcome the noise.

Validating motif discovery with ChIP results


To assess whether the motifs we discovered could be validated by published ChIP results, we tested for overlap between our results and ChIP peaks from the ENCODE project. We selected 43 genome-wide ChIP experiments in relevant cell-types for TFs with motifs we discovered, and compared these results pairwise with the clusters that were enriched for those same motifs. For each cluster, we counted the percent of DHSs that overlapped ChIP peaks in each experiment. This comparison yielded a matrix of overlap percentages. We used Mann-Whitney significance test to measure the expected positive comparisons (where the motif enrichment matched the ChIPped factor) against the expected negative comparisons (where the enriched motif was for a different TF) to find p-values of overlap. The overlap for each factor was: AP1 (Fos:Jun) (5% vs 0%), GATA (7% vs 1%), HNFs (30% vs 2%), POU5F1 (18% vs 0%), IRFs (5% vs 1%), SPI1 (26% vs 1%), RUNXs (89% vs 9%), REST (50% vs 1%), and SP1 (5% vs 1%). 

Comparing DHS-gene correlation to experimental 3C evidence.


DHS data combined with expression gives us a reasonable hypothesis for mapping distal regulatory elements to genes. We proposed several connections between genes and regulators and tested a few well-studied 3C loci to investigate the overlap between our predictions and experimental results. We found the results to be remarkably consistent; however, in some sense, we expect overlap to be imperfect. For some loci, we found no convincing agreement with the reported 3C looping interactions (Table S11). Disagreement can be for a variety of reasons. In some cases, this may be because we did not analyze the cell-types where the 3C interaction was described. In other cases, the examples highlight the incomplete agreement between 3C and the correlation analysis, possibly due to poised DHSs or cross-hybridizing of probes used for expression analysis causing the incorrect reporting of expression levels. Here are some of the limitations to comparing our method with 3C experiments:


1. Combinatorial regulation complicates the correlation analysis. First, regulatory elements are known to function in concert. For example, there may be complex relationships (such as boolean AND, OR, XOR) between elements. In the event of such higher-order relationships, we would not necessarily expect to see simple correlation between individual elements and expression. It is possible to build models that identify the simplest combinatorial relationships, but the possibilities quickly explode into the computationally intractable.


2. Open chromatin sites can be bound by different factors. DNase-seq signal is one step abstracted away from the actual binding of a transcription factor. A distal regulatory element could be open in many cell-types, but bound by different factors in each. In this case, the identity of the bound factors may be the meaningful signal affecting expression, while the DNase signal may not differ across cell-types (and hence, would not correlate with expression). This points to the benefit of using additional information, like computational motif analysis, ChIP results, or DNA footprints to supplement the DNase signal.


3. Both experiments are limited by tissue, environmental, and developmental specificity. The regulatory connections we seek are often cell-type, environment, and developmental stage specific. For either 3C or correlation analysis, we will only see connections that occur under conditions included in the study. As such, the links proposed by either method should be considered a subset of all possible links.


4. Poised enhancers may be DNaseI-hypersensitive or create long-range loops without affecting expression. There is some evidence that long-range regulators may be “poised” to prepare a gene set for rapid response. Poised enhancers could form a chromatin loop and be DNaseI-hypersensitive, but not affect expression. One recent example is the GR-induced activation of the CIZ1 gene in mouse (Hakim et al. 2009). In this study, Hakim et al. proposed that a chromatin loop forms before expression is induced in order to facilitate rapid response. Another example is in the beta-globin locus, where progenitor erythrocytes begin to form the LCR loop without expressing the beta-globins, and expression begins later down the differentiation pathway. If a poised enhancer loops to interact with a target promoter without affecting expression, the correlation and 3C results will disagree (Zentner, Tesar, and Scacheri 2011, Creyghton et al. 2010, Rada-Iglesias et al. 2011)


5. Physical proximity may reflect packing, and have nothing to do with regulation. DNA must be packed tightly to fit within the nucleus. Evidence suggests that physical proximity is often regulatory, but it is likely that some physical proximity is simply due to space restriction in the nucleus.


6. Regulation may not require physical proximity. Despite recent progress, how enhancers work is still unclear. Much emerging evidence supports chromatin loops bringing distal regulators near promoters of genes they regulate. These results imply tissue-specific physical proximity (Tolhuis et al. 2002). In a recent review, all tested transcription factors contributing to loops affected transcription (Sexton et al. 2009); this result held for both forming and maintaining loops. However, this is still an open question and scientists have been hypothesizing about it for decades (Ptashne 1986). Even if physical proximity implied regulation, it does not follow that regulation implies physical proximity. There is some evidence for another model of distal regulation: the tracking model (Hatzis and Talianidis 2002, Herendeen, Kassavetis, and Geiduschek 1992). These models are not necessarily mutually exclusive: an enhancer may track along the DNA to find a promoter, thereby forming a loop (Dean 2011). Regulation that happens at a distance could possibly be identified by the correlation analysis but not by 3C.


7. Populations of Cells. Neither the correlation analysis nor 3C will identify short-lived interactions because of noise inherent in a population of cells. Equivalently, long-lived interactions that occur in a small subset of cells will also be difficult to detect. These limitations may manifest themselves differently in a 3C experiment. For example, there could be a regulatory region that maintains an open chromatin state in the majority of cells throughout a time-course, while it may only be involved in an enhancing loop interaction for a brief moment. In such a case, we may identify a connection using the correlation analysis, but see weak or no evidence of loop formation.


8. 3C data comes primarily from mouse. Most of the long-range interaction studies have been done in mouse cells. While there will clearly be differences between mouse and human, the high level of conservation in many of these regions make mouse a reasonable model to begin with. Vernimmen et al. (2009) have engineered mouse cells with human sequences to test interactions at the human alpha-globin locus. Despite key differences between mouse and human (Anguita et al. 2002), they conclude the overall architecture is maintained. Nevertheless, there are 65 million years of evolution since the human mouse divergence and there is no guarantee that 3C mouse data is always representative of human.


9. Correlation detects indirect regulation. Correlation may detect connections that are correlated but not interacting and directly influencing regulation. For example, a DHS will correlate not only with the gene it regulates but also with every gene within 100kb that has a matching expression pattern. This is both strength and a limitation: it flags potential trans-effects at the cost of specificity. 


10. 3C resolution is limited by location and frequency of restriction sites. These can be multi-kb-sized fragments. On the other hand, the correlation results highlight specific, 150 bp regulatory elements. This difference introduces complications into comparing the results. For example, there may be multiple nearby hypersensitive sites connecting in different directions. This may indicate a transitory looping structure, which a typical 3C experiment could miss due to diluted signal.

POU5F1/NANOG and ES-specific connections


In our expression data, POU5F1(OCT4) is expressed only slightly higher in ES cells than other cell-types. Several reviews have raised questions about the cell-type expression pattern of POU5F1 and pointed out some question of the reliability of Affy arrays (de Jong and Looijenga 2006; Liedtke et al. 2008). Affy HuEx arrays are unable to differentiate between two isoforms of POU5F1: OCT4A, which is expressed in the nucleus and necessary for pluripotency, and OCT4B, which is expressed in the cytoplasm and present in somatic cells (Liedtke et al. 2008). 


Along similar lines, NANOG also has a very questionable expression result, due to probe cross-hybridization. Most of the probes mapping to NANOG on the Affymetrix HuEx arrays we used are flagged for cross-hybridization problems. The single probeset passing the cross-hybridization filter is not in a constitutive exon, so our NANOG expression measurements are questionable. In line with this, NANOG expression measurements are generally not higher in normal stem cells, though it is upregulated in Ntera2 cells.


This limitation of the Affy arrays makes it more difficult for us to identify ES-specific connections, motifs, and pathways near these genes. In the future, more accurate expression data may enable a more thorough study of ES-specific information.

Beta-globin locus and olfactory receptor genes


In our microarray data, several olfactory receptor genes (OR51AB1P, OR51B4, OR51B3P, OR51B2) are overexpressed in K562 cells. As such, these genes correlate with K562-specific DHSs throughout the locus. It is unlikely that these genes are expressed in erythroid tissue, as they are assumed to be primarily used in epithelial tissue. This expression can be explained by a few things: First, these are small genes which may not have accurate probes on the microarrays; and second, the K562 cell line highly expresses the nearby HBE1 gene (embryonic hemoglobin), which could be driving rampant expression of these nearby olfactory genes. Because this likely represents an artifact, we removed these connections from the figure.

Pathway analysis


Functional pathways require the coordinated regulation of multiple genes, and their activity may vary depending on cell-type under the direction of cell-type-specific regulatory elements. We hypothesized that the similar, cell-type specific regulation in some of our SOM clusters corresponds to the activity of genes in the same pathway. We associated genes with SOM clusters and determined whether there was enrichment in clusters for genes in common pathways. Initially, for each SOM cluster, we mapped each DHS to its nearest protein-coding gene. For each SOM node, we created a set of genes consisting of all genes assigned to any DHS in that node. To filter noise, we selected only the DHSs in the nearest 90th quantile to the cluster profile, with a maximum of 1,000 sites in each cluster. We then calculated pathway enrichment scores using the bioconductor package MGSA (Model-based Gene Set Analysis) (Gentleman et al. 2004, Bauer et al. 2010, Bauer et al. 2011). MGSA considers a query set of genes along with a database of pathways or gene sets, and builds a model to predict which gene sets are likely to have generated the genes in the query set. It uses a Bayesian method to calculate a posterior probability over gene sets, allowing us to infer which gene sets are likely to be activated. We considered a query set enriched for a given pathway if the posterior probability of activation was > 0.5. Pathways in the KEGG (Kanehisa et al. 2012) and Reactome 40 (Matthews et al. 2009) pathway databases were considered. 585 clusters were enriched for at least 1 pathway (Figure S4). For example, immune-related genes are commonly enriched in lymphoblast-specific clusters. In several myoblast/myotube-specific SOM clusters, the DHSs are near genes that relate to striated muscle contraction. To determine how our DHS-gene mappings affected this analysis, we assigned to each DHS all of its connected genes, or if no connections had been found, to its nearest gene. We then repeated the pathway enrichment analysis using SOM node gene sets based on these DHS gene assignments. Adding genes to SOM clusters based on our DHS to gene mappings had a minor effect, but the lack of a correct answer made it impossible to test whether this offered an improvement.
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